Abstract
The eigenvalue equation of a band or a block tridiagonal matrix, the tight binding model for a crystal, a molecule, or a particle in a lattice with random potential or hopping amplitudes, and other problems lead to three-term recursive relations for (multicomponent) amplitudes. Amplitudes n steps apart are linearly related by a transfer matrix, which is the product of n matrices. Its exponents describe the decay lengths of the amplitudes. A formula is obtained for the counting function of the exponents, based on a duality relation and the Argument Principle for the zeros of analytic functions. It involves the corner blocks of the inverse of the associated Hamiltonian matrix. As an illustration, numerical evaluations of the counting function of quasi 1D Anderson model are shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.