Abstract

Using 22Na point sources and phantoms filled with 18F, as well as a phantom filled with either 99mTc or 177Lu, we evaluated the coincidence counting rate and spatial resolution when both a PET and a therapeutic radionuclide were in the PET system. Because 99mTc has a suitable half-life and is easy obtainable, we used it as a substitute for a generic therapeutic radionuclide. High activities of 99mTc deteriorated the coincidence counting rate from the 18F-filled phantom and the 22Na point source on all 3 systems. The counting rate could be corrected to a high degree on one of the systems by its dead-time correction. Spatial resolution was degraded at high 99mTc activities for all systems. On one of the systems, 177Lu increased the coincidence counting rate and slightly affected the spatial resolution. The results for high 177Lu activities were similar to those for 99mTc. Intratherapeutic imaging might be a feasible method of studying the response to RPT. However, some sensitive preclinical PET systems, unable to handle high counting rates, will have count losses and may also introduce image artifacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.