Abstract

When a monolayer of negatively charged surfactant molecules is brought in contact with an aqueous solution containing mixtures of counterions of different size and valency, very large deviations from Poisson–Boltzmann theory (PBT) develop at a high surface charge, with the smaller counterion outcompeting the larger one (even if divalent) near the interface, leading to counterion segregation [V.L. Shapovalov, G. Brezesinski, J. Phys. Chem. B 110 (2006) 10032]. We use a modified PBT that empirically includes an extended Carnahan–Starling equation-of-state to describe hard-sphere interactions in electrical double layers containing ions of different size and charge. Model calculations are made for ion concentration profiles, free energies, surface pressures, and differential capacities. At high surface charge, volume interactions become important, leading to significant deviations from PBT. In contrast to PBT, at high surface charge, contributions to energy and pressure are no longer mainly entropic, but instead volume and electrostatic field effects now dominate. When the hydrated size of the divalent ion is used as an adjustable parameter, the theory is in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.