Abstract

Structural aspects of binding of water cluster and halides in the octaamino cryptand L (1,4,11,14,17,24,29,36-octaazapentacyclo[12.12.12.2.(6,9)2.(19,22)2(31,34)]tetratetraconta-6(43),7,9(44),19(41),20,22(42),31(39),32,34(40)-nonaene, N(CH2CH2NHCH2-p-xylyl-CH2NHCH2CH2)3N) in a protonated state were examined. Crystallographic results show binding of the acyclic quasiplanar water tetramer [H4L(H2O)4](I)4.2.57H2O (1) in a tetraprotonated cryptand L having an iodide counteranion, where two water molecules reside inside the two tren-based cavity, bridged by a third water molecule, and a fourth external water molecule is hydrogen bonded to the bridged water molecule. In the case of complexes [H6L(Br)][(Br)6H].4H2O.2HBr (2) and [H6L(Cl)][(Cl)6H].10.86H2O (3), a single bromide and chloride occupied, respectively, the inside of the cryptand cavity, where L is in a hexaprotonated state. Monotopic recognition of bromide/chloride was observed at the center of the cryptand cavity where halides show C-H...halide interactions instead of the N-H...halide interactions reported in the ditopic complexes of halides with the same cryptand, 5 and 6. Thermal analyses on 1-3 were carried out, and the data obtained distinctly differentiate water cluster complex 1 from the anion-encapsulated cryptates 2 and 3. This study represents the first example of anion-controlled cluster formation inside the cavity of a cryptand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.