Abstract
Urea-induced protein denaturation can be effectively inhibited by trehalose, but the thermodynamic and kinetic behaviors are still unclear. Herein, the counteraction of trehalose on urea-induced unfolding of ferricytochrome c was studied. Thermodynamic parameters for the counteraction of trehalose were derived based on fluorescence spectroscopic data. Then the kinetics was emphatically investigated by stopped-flow fluorescence spectroscopy. Urea-induced unfolding of ferricytochrome c in 8.00mol/L urea solution reveals two observable phases, including fast and slow phases following a burst phase. Trehalose has little influence on the burst phase amplitude. Nevertheless, the observable unfolding pathway is significantly affected by trehalose. At lower trehalose concentrations (<0.20mol/L) in 8.00mol/L urea, the unfolding pathways still keep to show two phases. However, the rate constant and amplitude for the fast phase diminish with increasing trehalose concentration. In contrast, the rate constant for the slow phase shows only a slight change with a significant increase of the amplitude. At higher trehalose concentrations (>0.30mol/L), the unfolding pathway is transformed into a single slow phase. The rate constant and amplitude for the single phase also decrease with increasing trehalose concentration. The studies are expected to help our understanding of trehalose effects on protein stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.