Abstract

The quasi-2D electrons in graphene behave as massless fermions obeying a Dirac–Weyl equation in the low-energy regime near the two Fermi points. The stability of spin-polarized phases (SPP) in graphene is considered. The exchange energy is evaluated from the analytic pair-distribution functions, and the correlation energies are estimated via a closely similar four-component 2D electron fluid which has been investigated previously. SPPs appear for sufficiently high doping, when the exchange energy alone is considered. However, the inclusion of correlations is found to suppress the spin-phase transition in ideal graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.