Abstract
This article investigates the behavior of two parallel layers of different miscible dielectric liquids enclosed and sandwiched between two electrodes. By applying an electric potential to one electrode while grounding the other, electro-convection occurs when the electric Rayleigh number exceeds a critical value, setting the fluid into motion and resulting in rapid mixing between the two liquids. A numerical model is developed to account for the varying ionic mobility and permittivity of the two liquids, considering their evolution based on the relative concentration field. The simulations confirm that electro-convection significantly enhances the mixing between the two liquids, as expected. Additionally, intriguing ripples are observed near the initial interface during the early stages of electro-convection instability growth. To explain and describe the flow dynamics in terms of stability analysis, a semi-analytical model is presented. This study provides insights into the mixing behavior and flow dynamics of miscible dielectric liquids under the influence of electro-convection. The findings contribute to a better understanding of the underlying mechanisms and can be valuable for applications such as microfluidics, energy conversion, and mixing processes. Further research is encouraged to explore additional parameters and optimize the control of electro-convection for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.