Abstract

Electron-hole bilayers are expected to make a transition from a pair of weakly coupled two-dimensional systems to a strongly coupled exciton system as the barrier between the layers is reduced. Coulomb drag measurements on devices with a 30 nm barrier are consistent with two weakly coupled 2D Fermi systems where the drag decreases with temperature. For a 20 nm barrier, however, we observe an increase in the drag resistance as the temperature is reduced when a current is driven in the electron layer and voltage measured in the hole layer. These results indicate the onset of strong coupling possibly due to exciton formation or phenomena related to exciton condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.