Abstract

Retraction injury can result in significant complications during intracranial operations. Alternative surgical techniques to minimize retraction pressure and duration of retraction can minimize the risk of retraction injury. We describe the use of a cottonoid "slider," which is a simple, cost-effective modification of a commonly used cottonoid, in multiple applications. The cottonoid sliders are constructed preoperatively by overlaying an adhesive plastic incision drape on one side of a dry cottonoid patty and trimming the edges to fit the form of the cottonoid. Intraoperatively, the sliders can slide across the parenchymal surface atraumatically and are used for gentle retraction to expose desired areas. In addition, suction may be placed on the slider to clear fluid from the operative view. The plastic side of the slider prevents adherence to the parenchymal surface. Retractorless surgical techniques have been developed to minimize risk of retractor associated injury in intracranial surgery by reducing retraction pressure and duration. Given that the cottonoid sliders glide along the parenchyma, do not stick, and are used for dynamic retraction, the main objectives to minimize retraction injury can be met while not compromising operative efficiency. Cottonoid sliders are a simple and cost-effective method of providing gentle exposure during intracranial surgery. This technique represents a valuable and cost-effective addition to the neurosurgical armamentarium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.