Abstract

Hepatocellular carcinoma (HCC) is the most common liver malignancy, and the lack of effective chemotherapies underlines the need for novel therapeutic approaches for this disease. Recently, we discovered a novel synergistic induction of cell death by combining sorafenib, the only routinely used palliative chemotherapeutic agent, and the triterpenoid oleanolic acid (OA). However, the underlying mechanisms of action have remained obscure. Here, we report that sorafenib and OA acted in concert to trigger mitochondria-mediated apoptotic cell death, which is dependent on reactive oxygen species (ROS). Sorafenib/OA cotreatment significantly increased ROS production, which was prevented by the ROS scavengers α-tocopherol and MnTBAP. Importantly, rescue experiments showed that ROS were required for sorafenib/OA-induced apoptosis as ROS scavengers protected HCC cells against cell death. In addition, sorafenib and OA cotreatment cooperated to decrease myeloid cell leukaemia-1 expression and to activate Bak, two events that were prevented by ROS scavengers. Bak activation was accompanied by the loss of mitochondrial membrane potential, followed by PARP cleavage, DNA fragmentation and, finally, apoptotic cell death in HCC cells. By providing new insights into the molecular regulation of sorafenib/OA-mediated and ROS-dependent cell death, our study contributes toward the development of novel treatment strategies to overcome sorafenib resistance in HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.