Abstract

PI3K-Akt is overexpressed in 50% to 70% of pancreatic ductal adenocarcinoma (PDAC). The hypothesis of this study is that PI3K and EGFR coinhibition may be effective in PDAC with upregulated PI3K-Akt signaling. Multiple inhibitors were tested on five PDAC cell lines. EGFR inhibitor (EGFRi)-resistant cell lines were found to have significantly overexpressed AKT2 gene, total Akt, and pAkt. In vitro erlotinib-resistant (ER) cell models (BxPC-ER and PANC-ER) with highly constitutively active PI3K-Akt were developed. These and their respective parent cell lines were tested for sensitivity to erlotinib, IGFIR inhibitor NVP-AEW541 (AEW), and PI3K-alpha inhibitor NVP-BYL719 (BYL), alone or in combination, by RTK-phosphoarray, Western blotting, immunofluorescence, qRT-PCR, cell proliferation, cell cycle, clonogenic, apoptosis, and migration assays. Erlotinib plus BYL was tested in vivo. Erlotinib acted synergistically with BYL in BxPC-ER (synergy index, SI = 1.71) and PANC-ER (SI = 1.44). Treatment of ER cell lines showing upregulated PI3K-Akt with erlotinib plus BYL caused significant G1 cell-cycle arrest (71%, P < 0.001; 58%, P = 0.003), inhibition of colony formation (69% and 72%, both P < 0.001), and necrosis and apoptosis (75% and 53%, both P < 0.001), more so compared with parent cell lines. In primary patient-derived tumor subrenal capsule (n = 90) and subcutaneous (n = 22) xenografts, erlotinib plus BYL significantly reduced tumor volume (P = 0.005). Strong pEGFR and pAkt immunostaining (2+/3+) was correlated with high and low responses, respectively, to both erlotinib and erlotinib plus BYL. PDAC with increased expression of the PI3K-Akt pathway was susceptible to PI3K-EGFR coinhibition, suggesting oncogenic dependence. Erlotinib plus BYL should be considered for a clinical study in PDAC; further evaluation of pEGFR and pAkt expression as potential positive and negative predictive biomarkers is warranted.

Highlights

  • Pancreatic ductal adenocarcinoma, pancreatic ductal adenocarcinoma (PDAC), has very poor prognosis, with 85% of patients presenting with locally advanced or metastatic disease [1]

  • Treatment of ER cell lines showing upregulated PI3K–Akt with erlotinib plus BYL caused significant G1 cell-cycle arrest (71%, P < 0.001; 58%, P 1⁄4 0.003), inhibition of colony formation (69% and 72%, both P < 0.001), and necrosis and apoptosis (75% and 53%, both P < 0.001), more so compared with parent cell lines

  • PDAC with increased expression of the PI3K–Akt pathway was susceptible to PI3K–EGFR coinhibition, suggesting oncogenic dependence

Read more

Summary

Introduction

Pancreatic ductal adenocarcinoma, PDAC, has very poor prognosis, with 85% of patients presenting with locally advanced or metastatic disease [1]. Gemcitabine has been the cornerstone chemotherapy for advanced PDAC [2]. Authors' Affiliations: 1Cancer Surgery; 2Flow Cytometry Unit, Haematology Division; 3Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney; Departments of 4Medical Oncology, 5Upper Gastrointestinal Surgery, and 6Pathology, Royal North Shore Hospital, Sydney, Australia. Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.