Abstract

Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014. The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such a comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of automation for routine, orbital pass, ground operations can still reduce mission costs through smaller staffing of operators and limiting their working hours. The challenge, then, for the SMAP GDS engineering team, is to formulate an automated operations strategy--and corresponding system architecture -- to minimize operator intervention during routine operations, while balancing the development costs associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS -- NASA's AMMOS Mission Data Processing and Control System (AMPCS) -- provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.