Abstract

Class imbalance is one of the main problem using different algorithms used in machine learning. In imbalance classification of data the false negative is always high. The researchers have introduced many methods to deal with this problem, but the purpose of this paper is to apply machine learning algorithms under the SMOTE and cost sensitive learning approaches and acquired the results from the different experiments to find out the suitable results for imbalanced data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.