Abstract

This paper discusses cost scaling laws and optimization of hadron colliders based on high field magnets. Using a few simplifying assumptions that should give a reasonable approximation, cost of the magnet is divided among several major components. Scaling law for every component is determined along with the weight factors that allow cost comparison between different magnet designs. Cost of hadron collider as a function of field, aperture size and critical current density in superconductor is described analytically that allows cost optimization by changing magnet parameters. The optimum magnetic field is determined for machines based on NbTi superconductor, operating at 4.2 K or 1.9 K and NB{sub 3}Sn superconductor operating at 4.2 K. Analyzed influence of main magnet design parameters on a machine cost provided information on ways leading to the magnet cost reduction. Economical justification of a NB{sub 3}Sn collider is performed, which lets to determine the maximum price ratio between NB{sub 3}Sn and NbTi superconductors that makes NB{sub 3}Sn collider economically effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.