Abstract

Prestressed wire winded framework (PWWF) is an advanced structure and the most expensive part in the large-scale equipment. The traditional design of PWWF is complicated, highly iterative and cost uncontrolable, because PWWF is a variable stiffness multi-agent structure, with non-linear loading and deformation coordination. In this paper, cost optimization method of large-scale PWWF by multiple-island genetic algorithm (MIGA) is presented. Optimization design flow and optimization model are proposed based on variable-tension wire winding theory. An example of the PWWF cost optimization of isostatic equipment with axial load 6 000 kN is given. The optimization cost is reduced by 21.6% compared with traditional design. It has also been verified by the finite-element analysis and successfully applied to an actual PWWF design of isostatic press. The results show that this method is efficient and reliable. This method can also provide a guide for optimal design for ultra-large dimension muti-frame structure of 546 MN and 907 MN isostatic press equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.