Abstract
In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N–H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.
Highlights
Microorganisms without affecting the external and internal environment of the host[10,12]
Surface Characterization of nonwoven cotton fabric modified with AgNPs, chitosan@AgNPs, and N-halamine-chitosan@AgNPs was performed by FTIR (Fourier Transform Infrared) spectroscopy, SEM, and XRD
A cost-effective and eco-friendly nonwoven cotton fabric with antibacterial and nontoxic properties is fabricated in this study
Summary
Microorganisms without affecting the external and internal environment of the host[10,12]. This paper aims to investigate nonwoven cotton fabric coated with N-halamine and silver nanoparticles to enhance synergistically their effectiveness against microbial growth. N-halamine, chitosan, and silver nanoparticles modified nonwoven cotton fabric (hereafter termed and read as N-halamine-chitosan@AgNPs (NWCF)) are fabricated by the dip-coating method. This method of coating is considered facile, environment friendly requires fewer chemicals, and is cost-effective[36]. The chlorinated chitosan and silver nanoparticles nonwoven cotton fabric is evaluated for their antimicrobial activity. The main features of this study include simple synthesis methodology, low cost, enhanced antimicrobial properties due to a combination of three different materials (silver nanoparticles, chitosan and n-halamine). The resulting modified non-woven cotton fabric was named and abbreviated as Nonwoven Cotton Fabric (NWCF)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.