Abstract

Due to the unique advantages of Pt, it plays an important role in fuel cells and microelectronics. Considering the fact that Pt is an expensive metal, a major challenging point nowadays is how to realize efficient utilization of Pt. In this paper, a cost-effective atomic layer deposition (ALD) process with a low N2 filling step is introduced for realizing well-defined Pt nanotube arrays in anodic alumina nano-porous templates. Compared to the conventional ALD growth of Pt, much fewer ALD cycles and a shorter precursor pulsing time are required, which originates from the low N2 filling step. To achieve similar Pt nanotubes, about half cycles and 10% Pt precursor pulsing time is needed using our ALD process. Meanwhile, the Pt nanotube array is explored as a current collector for supercapacitors based on core/shell Pt/MnO2 nanotubes. This nanotube-based electrode exhibits high gravimetric and areal specific capacitance (810 Fg(-1) and 75 mF cm(-2) at a scan rate of 5 mV s(-1) ) as well as an excellent rate capability (68% capacitance retention from 2 to 100 Ag(-1) ). Additionally, a negligible capacitance loss is observed after 8000 cycles of random charging-discharging from 2 to 100 Ag(-1) .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.