Abstract
The recent advancement in efficient and recoverable CO2 capture solvents has been stimulated by the environmental harm resulting from the accumulation of greenhouse gases. Ionic liquids (ILs) and IL-based solvents have given rise to a novel method of CO2 collection that is highly efficient, economical, and environmentally benign. However, there is a lack of knowledge about the implementation of this process on a wider scale, and it has limitations, including high solvent costs. This simulated study shows that [EMIM][NTF2] can remove up to 99.4% of the CO2 from industrial waste effluents using three distinct compositions. Following an economic study using a 20-year plant life estimate, with a plant capacity of 4000 kg/h (206.165 kmol/h) for the raw mixed stream flow (inlet) and a maximum CO2 capacity of 38.1 kmol/h, it was determined that the process’s overall annualized cost was USD 2.1 million with operating expenses being USD 1.8 million. The Aspen Activated Energy Analysis’s recommendation of adding a heat exchanger, with a payback year of 0.0586 years, a 23.34 m2 area, and potential energy cost savings of USD 340,182/Year was also implemented successfully. These findings propose a conceptual framework for the development of novel ionic liquids for CO2 capture. It also demonstrates that sustainable [EMIM][Tf2N]-based absorption techniques for CO2 capture have the potential to be an industrial technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.