Abstract

Recent simulations of the future development of the space debris environment revealed that the number of hypervelocity impacts on satellite surfaces will increase. Impacts of space debris particles and micrometeoroids can damage satellites. This can cause operational anomalies or even the loss of a satellite mission. The loss of a satellite reduces its expected operational lifetime. Thus, financial investments cannot be amortized completely. In this paper the cost of hypervelocity impacts on satellites is estimated. A risk analysis is performed by combining the probability of a penetration with the failure probability of the satellite. The goal of this work is to combine the risk of particle impacts with a cost analysis. The probability of a satellite failure is estimated by combining the probability of a penetration with a vulnerability model. The failure probability is weighted with the mission cost of a satellite. This results in a probability of loss of amortization. The amortization loss is used as estimation for the damage cost due to hypervelocity impacts. In this way it is possible to associate impacts with cost. The cost model is used to analyze selected reference missions. This analysis considers the influence of shielding measures on the mission cost. An important result is the estimation of the failure probability for different satellite wall designs including shielding. Shielding requires a modification of the satellite wall. This can result in an increasing complexity of the wall or an increasing mass. As a consequence, the hardware cost increase. To identify suitable shielding measures and to justify the additional financial investments, it is necessary to investigate the economic feasibility of such measures and to demonstrate their benefit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.