Abstract
For a graph Γ with adjacency matrix A, we consider a switching operation that takes Γ into a graph Γ′ with adjacency matrix A′, defined by A′ = Q^Τ AQ, where Q is a regular orthogonal matrix of level 2 (that is, Q^Τ Q = I, Q1 = 1, 2Q is integral, and Q is not a permutation matrix). If such an operation exists, and Γ is nonisomorphic with Γ′, then we say that Γ′ is semi-isomorphic with Γ. Semiisomorphic graphs are ℜ-cospectral, which means that they are cospectral and so are their complements. Wang and Xu [‘On the asymptotic behavior of graphs determined by their generalized spectra’, Discrete Math. 310 (2010)] expect that almost all pairs of ℜ-cospectral graphs are semi-isomorphic. Regular orthogonal matrices of level 2 have been classified. By use of this classification we work out the requirements for this switching operation to work in case Q has one nontrivial indecomposable block of size 4, 6, 7 or 8. Size 4 corresponds to Godsil-McKay switching. The other cases provide new methods for constructions of ℜ-cospectral graphs. For graphs with eight vertices all these constructions are carried out. As a result we find that, out of the 1166 graphs on eight vertices which are ℜ-cospectral to another graph, only 44 are not semi-isomorphic to another graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.