Abstract

In this article we study a hypothetical possibility of tracking the evolution of our Universe by introducing a series of the so-called standard timers. Any unstable primordial relics generated in the very early Universe may serve as the standard timers, as they can evolve through the whole cosmological background until their end while their certain time-varying properties could be a possible timer by recording the amount of physical time elapsed since the very early moments. Accordingly, if one could observe these quantities at different redshifts, then a redshift-time relation of the cosmic history can be attained. To illustrate such a hypothetical possibility, we consider the primordial black hole bubbles as a concrete example and analyze the mass function inside a redshifted bubble by investigating the inverse problem of Hawking radiation. To complete the analyses theoretically, the mass distribution can serve as a calibration of the standard timers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.