Abstract

In the Horava-Lifshitz theory of quantum gravity, two conditions -- detailed balance and projectability -- are usually assumed. The breaking of projectability simplifies the theory, but it leads to serious problems with the theory. The breaking of detailed balance leads to a more complicated form of the theory, but it appears to resolve some of the problems. Sotiriou, Visser and Weinfurtner formulated the most general theory of Horava-Lifshitz type without detailed balance. We compute the linear scalar perturbations of the FRW model in this form of HL theory. We show that the higher-order curvature terms in the action lead to a gravitational effective anisotropic stress on small scales. Specializing to a Minkowski background, we study the spin-0 scalar mode of the graviton, using a gauge-invariant analysis, and find that it is stable in both the infrared and ultraviolet regimes for $0 \le \xi \le 2/3$. However, in this parameter range the scalar mode is a ghost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.