Abstract

General relativistic entropic acceleration theory may explain the present cosmic acceleration from first principles without the need of introducing a cosmological constant. Following the covariant formulation of non-equilibrium phenomena in the context of a homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, we find that the growth of entropy associated with the causal horizon of our universe (inside a finite bubble in eternal inflation) induces an acceleration that is essentially indistinguishable from that of $\Lambda$CDM, except for a slightly larger present rate of expansion compared to what would be expected from the CMB in $\Lambda$CDM, possibly solving the so-called $H_0$ tension. The matter content of the universe is unchanged and the coincidence problem is resolved since it is the growth of the causal horizon of matter that introduces this new relativistic entropic force. The cosmological constant is made unnecessary and the future hypersurface is Minkowsky rather than de Sitter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.