Abstract

Flexible electrodes based on conversion-type materials have potential applications in low-cost and high-performance flexible sodium-ion batteries (FSIBs), owing to their high theoretical capacity and appropriate sodiation potential. However, they suffer from flexible electrodes with poor mechanical properties and sluggish reaction kinetics. In this study, freestanding CoS2 nanoparticles coupled with graphene oxides and carbon nanotubes (CoS2/GO/CNTs) flexible films with robust and interconnected architectures were successfully synthesized. CoS2/GO/CNTs flexible film displays high electronic conductivity and superior mechanical properties (average tensile strength of 21.27 MPa and average toughness of 393.18 KJ m−3) owing to the defect bridge for electron transfer and the formation of the π–π interactions between CNTs and GO. In addition, the close contact between the CoS2 nanoparticles and carbon networks enabled by the Co-N chemical bond prevents the self-aggregation of the CoS2 nanoparticles. As a result, the CoS2/GO/CNTs flexible film delivered superior rate capability (213.5 mAh g−1 at 6 A g−1, better than most reported flexible anode) and long-term cycling stability. Moreover, the conversion reaction that occurred in the CoS2/GO/CNTs flexible film exhibited pseudocapacitive behavior. This study provides meaningful insights into the development of flexible electrodes with superior mechanical properties and electrochemical performance for energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.