Abstract

Three coryneform strains from clinical specimens were studied. They belonged to the genus Corynebacterium, since they had type IV cell walls containing corynemycolic acids. They had phenotypic characteristics that included alpha-glucosidase, pyrazinamidase and alkaline phosphatase activities and fermentation of glucose, ribose, maltose and sucrose. These are the characteristics of Corynebacterium xerosis. Since this species is very rare in human pathology, the strains were studied in more detail by comparing the 16S-23S intergenic spacers, rDNA sequences and levels of DNA similarity of these three strains and those of the reference strains C. xerosis ATCC 373T and Corynebacterium amycolatum CIP 103452T. According to DNA-DNA hybridization data, the three novel strains are members of the same species (level of DNA similarity >72%). Phylogenetic analysis revealed that these strains are closely related to C. xerosis and C. amycolatum, but DNA-relatedness experiments showed clearly that they constitute a distinct new species, with levels of DNA relatedness of less than 23% to C. xerosis ATCC 373T and less than 5% to C. amycolatum CIP 103452T. Two other alpha-glucosidase-positive strains presenting the same biochemical characteristics were included in the study and proved to be C. amycolatum. This new species can be differentiated from C. xerosis and C. amycolatum strains by carbon source utilization, intergenic spacer region length profiles and some biochemical characteristics such as glucose fermentation at 42 degrees C and growth at 20 degrees C. The name Corynebacterium freneyi sp. nov. is proposed with the type strain ISPB 6695110T (= CIP 106767T = DSM 44506T).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.