Abstract

While Parkinson's disease is the result of dopaminergic dysfunction of the nigrostriatal system, the clinical manifestations of Parkinson's disease are brought about by alterations in multiple neural components, including cortical areas. We examined how 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration affected extracellular cortical glutamate levels by comparing glutamate levels in normal and MPTP-lesioned nonhuman primates (Macaca mulatta). Extracellular glutamate levels were measured using glutamate microelectrode biosensors. Unilateral MPTP-administration rendered the animals with hemiparkinsonian symptoms, including dopaminergic deficiencies in the substantia nigra and the premotor and motor cortices, and with statistically significant decreases in basal glutamate levels in the primary motor cortex on the side ipsilateral to the MPTP-lesion. These results suggest that the functional changes of the glutamatergic system, especially in the motor cortex, in models of Parkinson's disease could provide important insights into the mechanisms of this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.