Abstract

Abstract This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal) and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT) determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature. Research on TIG welding of lean duplex stainless steel S82441/1.4662 showed a clear influence of the applied shielding gas mixtures, where the addition of 5 to 15% N2 to Ar virtually no effect on the level of resistance to pitting corrosion, only 5% N2 addition has a positive effect, while use of a mixture of 50% Ar + 50% He compared with welding at 100% Ar atmosphere, can significantly reduce the resistance to pitting corrosion. Definite good results were obtained during TIG welding with the participation of activation flux (A-TIG). The weld surface of lean duplex stainless S82441/1.4662 obtained in A-TIG welding without the addition of filler metal has a much lower tendency to pitting corrosion than traditional welds made by TIG method. Pitting corrosion resistance of welds made by A-TIG improved with the increase of the heat input in the tested range of welding current 100-200 A. It was also found that the intensity of the occurrence of pitting does not affect the method of cleaning welds after welding, but the mechanical removal of a thin surface layer of metal significantly reduces their intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.