Abstract

Corrosion behavior of stainless steel types AISI 316L, 316Ti and 321 was studied at 750 0C in NaCl-KCl equimolar melts. Iron, chromium and manganese species constitute the major corrosion products. The following mechanism of stainless steel corrosion in molten chlorides was proposed: 1) chemical interaction between the alloy and the salt intensified by the formation of microgalvanic pairs; 2) formation of chromium and molybdenum carbide-containing phases in steel as a result of heating to 750 0C; 3) additional formation of galvanic pairs between the grains of austenitic alloys and the carbide phases at the grain boundaries resulting in enhanced intergranular corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.