Abstract
Abstract 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole (DAPO), 2-acetylthiophene thiosemicarbazone (2-AT), 2-hydroxyphenyl-5-mercapto-1-oxa-3,4-diazole (HMO), and 2-cinnamyl-5-mercapto-1-oxa-3,4-diazole (CMO) have been studied by measurement several quantum chemical parameters such as E HOMO, E LUMO, bandgap energy, softness, hardness, electrophilicity, nucleophilicity, and Fukui function analysis. The best corrosion inhibition efficiency was evaluated through a comparison between theoretical and experimental results. In gas and aqueous phases, protonated and nonprotonated species were investigated for their electronic structures in order to discover the factors and reasons behind corrosion inhibition. A theoretical study of all the studied compounds in gas and aqueous phases was investigated by employing the density functional theory (DFT) at 6–311++G(d, p) basis set and Becke’s three parameters hybrid exchange–correlation functional (B3LYP). The molecules are calculated using quantum computational chemistry calculations such as Gaussian09 software. The experiments were carried out on carbon steel and HCL. Carbon steel is the most often used steel because it combines outstanding mechanical qualities with a low cost. One of the most commonly utilized agents for these purposes is HCl solution. On the other hand, steel and ferrous alloys are likely to corrode under certain conditions. One of the most effective strategies for protecting metals against corrosion is corrosion inhibitors, and they are becoming more common.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.