Abstract

Cobalt is the standard binder in tungsten carbide (WC) hardmetals due to its compatibility with the WC phase, resulting in composites with exceptional hardness and wear resistance. However, their corrosion resistance is not satisfactory in many applications, leading to the early deterioration and failure of tools and equipment.In this work, the corrosion of WC hardmetals with three alternative binders (FeCoNi, NiCrCoMo and NiCrMo) is compared with a benchmark WC-Co composite, using electrochemical techniques such as open circuit potential (OCP) monitoring, polarisation curves and electrochemical impedance spectroscopy (EIS), assisted by scanning electron microscopy (SEM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.