Abstract

Dense SnO2-based electrode ceramics have extensive application prospect in glass electric-melting industry due to the excellent electrically-conductive and chemical property in high temperatures and oxidation environment. In this paper, dense SnO2-based electrode ceramics doped with MnO2 and Sb2O3 were prepared by pressureless sintering method and the corrosion rate in soda-lime glass liquid as well as the microstructure evolution was mainly investigated. The results suggested that SnO2-based ceramics had good corrosion resistance, and the minimum value was only 2.54×10−4 mm/h when MnO2 content is 1.0% and Sb2O3 content is 0.1%. Composition Elements of Glass liquid were detected in the grain boundary and some intergranular pores. It was found that SnO2 grains remained unchanged, whereas MnO2 was easily dissolved into molten glass liquid. SnO2-based electrode ceramics with dense structure and few amounts of additives had excellent corrosion resistance to the molten glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.