Abstract
Nanometer scale imaging of hydrogen in solid materials remains an important challenge for the characterization of advanced materials, such as semiconductors, high-strength metallic alloys, and hydrogen storage materials. Within this work, we demonstrate high-resolution imaging of hydrogen and deuterium within Mg2Ni/Mg2NiH4 hydrogen storage thin films using an in-house developed secondary ion mass spectrometer (SIMS) system attached to a commercially available dual-beam focused ion beam - scanning electron microscope (FIB-SEM) instrument. We further demonstrate a novel approach to measure the size, shape, and distribution of the hydride phase in partially transformed films using laser scanning confocal microscopy (LSCM) to measure surface topography changes from the hydride phase volume expansion. Combining these techniques provides new insights on hydride nucleation and growth within the Mg2NiHx system. Finally, we demonstrate the efficacy of tracking deuterium as a hydrogen analog to reduce the background for SIMS imaging of hydrogen in high-vacuum chambers (∼10−6 mbar).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.