Abstract

A midlatitude squall line passed over the array of the Cooperative Convective Precipitation Experiment (CCOPE) on 1 August 1981. The structure and evolution of the squall line, and the correlations of the storm with surface thermodynamics and kinematic fields are investigated, mainly by using radar and surface mesonet data in CCOPE. The storm-wide precipitation efficiency is also estimated. The squall line was of an obvious process of metabolism. Thirty-four cells formed successively in front of the primary storm and eventually merged into it during the period 1700-2010 MDT. The newest cells formed near surface equivalent potential temperature maxima, and near surface moisture flux convergence zones or/ and the “temperature break lines”. The thunderstorm rainfall, with the precipitation efficiency of 54%, lags 25-30 min behind the moisture flux convergence on the average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.