Abstract

Stems of cottonwood (Populs deltoides Bartr. ex Marsh.) plants grown under different conditions were examined to determine the relation between net endogenous auxin yields and the acropetal advance of the primary‐secondary vascular transition zone (TZ). In all treatments, the internode yielding maximum net auxin activity, as determined by the Avena curvature bioassay, closely corresponded with the internode in which the TZ occurred. Under short‐day (SD) dormancy‐inducing conditions, auxin yield declined steadily while the maximum auxin peak and the TZ shifted toward younger internodes. Auxin yields from these plants were extremely low after 5 weeks of SD compared with those from long‐day (LD) plants. The only consistent auxin yield was obtained from internodes subtending young leaves beneath the apical bud. Plants placed in SD for 3 weeks and then returned to LD conditions showed an immediate increase in auxin yield in the stem, and the progressive acropetal advance of the TZ under SD was reversed. Therefore, within 7 LD the positions of the TZ and peak auxin yield corresponded to those observed before the imposition of SD Fully dormant plants placed in LD showed a dramatic rise in auxin yields during the first 2 weeks of renewed growth. Although low levels of auxin were found in the newly developing shoots after 6 LD, yields increased rapidly after 9 and 14 LD. The position of the TZ corresponded with the peak of net auxin activity after 9 and 14 LD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.