Abstract

A wave-front folded interferometer consisting of a Kosters prism and an image forming lens provides an excellent way to make a precision measurement of correlation-induced spectral changes. Experiments are successfully made by incorporating a primary spectral source of super-luminescent diodes. The diode emits a Gaussian-like spectrum. Theoretical background for the measurement is given in the framework of geometric optics. It is shown theoretically and experimentally that the spectral changes are induced by two causes: one is the complex degree of spectral coherence of the secondary source, and the other the time delay between the interfering optical waves. No spectral change takes place if the secondary source satisfies a spatially incoherent condition at particular optical frequency, whereas the spectrum changes most clearly if a spatially coherent condition is satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.