Abstract

We explore the percolation threshold shift as short-range correlations are introduced and systematically varied in binary composites. Two complementary representations of the correlations are developed in terms of the distribution of phase bonds or, alternatively, using a set of appropriate short-range order parameters. In either case, systematic exploration of the correlation space reveals a boundary that separates percolating from nonpercolating structures and permits empirical equations that identify the location of the threshold for systems of arbitrary short-range correlation states. Two- and three-dimensional site lattices with two-body correlations, as well as a two-dimensional hexagonal bond network with three-body correlations, are explored. The approach presented here should be generalizable to more complex correlation states, including higher-order and longer-range correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.