Abstract

Blood gas analysis is often used to assess acid-base, ventilation, and oxygenation status in critically ill patients. Although arterial blood gas (ABG) analysis remains the gold standard, venous blood gas (VBG) analysis has been shown to correlate with ABG analysis and has been proposed as a safer less invasive alternative to ABG analysis. The purpose of this study was to evaluate the correlation of VBG analysis plus pulse oximetry (SpO2) with ABG analysis. We performed a prospective cohort study of patients in the emergency department (ED) and intensive care unit (ICU) at a single academic tertiary referral center. Patients were eligible for enrollment if the treating physician ordered an ABG. Statistical analysis of VBG, SpO2, and ABG data was done using paired t test, Pearson χ2, and Pearson correlation. There were 156 patients enrolled, and 129 patients completed the study. Of the patients completing the study, 53 (41.1%) were in the ED, 41 (31.8%) were in the medical ICU, and 35 (27.1%) were in the surgical ICU. The mean difference for pH between VBG and ABG was 0.03 (95% confidence interval: 0.03-0.04) with a Pearson correlation of 0.94. The mean difference for pCO2 between VBG and ABG was 4.8 mm Hg (95% confidence interval: 3.7-6.0 mm Hg) with a Pearson correlation of 0.93. The SpO2 correlated well with PaO2 (the partial pressure of oxygen in arterial blood) as predicted by the standard oxygen-hemoglobin dissociation curve. In this population of undifferentiated critically ill patients, pH and pCO2 on VBG analysis correlated with pH and pCO2 on ABG analysis. The SpO2 correlated well with pO2 on ABG analysis. The combination of VBG analysis plus SpO2 provided accurate information on acid-base, ventilation, and oxygenation status for undifferentiated critically ill patients in the ED and ICU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.