Abstract

Defect structure and conductivity behaviour are discussed in the solid solution Bi 3Nb 1− x Y x O 7− x (0.0 ≤ x ≤ 1.0). Investigations were carried out using a combination of ac impedance spectroscopy and powder X-ray and neutron diffraction. Low temperature conductivity and activation energy both increase as a function of x. The former is attributed to an increase in oxide ion vacancy concentration, whereas the latter is due a redistribution of oxide ion vacancies as determined by neutron diffraction measurements. The defect structures at room temperature and 800 °C are presented. Curvature in Arrhenius plots of conductivity throughout the composition range is associated with a temperature dependent redistribution of oxide ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.