Abstract
Gaussian Markov Random Fields over graphs have been widely used in many fields of application. Here, we address the matrix construction problem that arises in the study of Gaussian Markov Random Fields with uniform correlation, i.e., those in which all correlations between adjacent nodes in the graph are equal. We provide a characterization of the correlation matrix of a Gaussian Markov Random Field with uniform correlation over a cycle graph, which is circulant and has a sparse inverse matrix, and study the relationship with the stationary Gaussian Markov Process on the circle. Two methods for computing the correlation matrix are also provided. Ultimately, asymptotic results for cycle graphs of large order point out the relation between Gaussian Markov Random Fields with uniform correlation over cycle and path graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.