Abstract

The Colle and Salvetti approach [Theo. Chim. Acta 37, 329 (1975)] to the calculation of the correlation energy of a system is modified in order to explicitly include into the theory the kinetic contribution to the correlation energy. This is achieved by deducing from a many electrons wave function, including the correlation effects via a Jastrow factor, an approximate expression of the one-electron reduced density matrix. Applying the latter to the homogeneous electron gas, an analytic expression of the correlation kinetic energy is derived. The total correlation energy of such a system is then deduced from its kinetic contribution inverting a standard procedure. At variance of the original Colle-Salvetti theory, the parameters entering in both the kinetic correlation and the total correlation energies are determined analytically, leading to a satisfactory agreement with the results of Perdew and Wang [Phys. Rev. B 45, 13244 (1992)]. The resulting (parameter-free) expressions give rise to a modified-local-density approximation that can be used in self-consistent density-functional calculations. We have performed such calculations for a large set of atoms and ions and we have found results for the correlation energies and for the ionization potentials which improve those of the standard local-density approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.