Abstract

The ground-state magnetic phase diagram is investigated for the two- and three-dimensional t–t′ Hubbard model. We take into account commensurate ferro-, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often missed in previous investigations. We trace the influence of correlation effects on the stability of both spiral and collinear magnetic order by comparing the results of employing both the generalized non-correlated mean-field (Hartree–Fock) approximation and generalized slave boson approach by Kotliar and Ruckenstein with correlation effects included. We found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistic large Hubbard U, if the correlation effects are taken into account. The electronic phase separation plays an important role in the formation of magnetic states and corresponding regions are wide, especially in the vicinity of half-filling. The details of magnetic ordering for different cubic lattices are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.