Abstract
Dynamical moduli, such as storage and loss moduli, characterize the viscoelasticity of materials (i.e., time-dependent elasticity) and convey important information about the relaxation processes of glasses and supercooled liquids. A fundamental question is what ultimately determines them in glassy materials. Here, for several model metallic glasses, we demonstrate that both the storage and loss moduli are uniquely determined by the most probable atomic nonaffine displacements, regardless of temperature or frequency. Moreover, the fast-moving atoms (which contribute to dynamical heterogeneity) do not contribute explicitly to the moduli. Our findings provide a physical basis for the origin of viscoelasticity in metallic glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.