Abstract
High pressure and temperature experiments on Ge-Sn mixtures to 24 GPa and 2000 K reveal segregation of Sn from Ge below 10 GPa whereas Ge-Sn agglomerates persist above 10 GPa regardless of heat treatment. At 10 GPa Ge reacts with Sn to form a tetragonal P4(3)2(1)2 Ge(0.9)Sn(0.1) solid solution on recovery, of interest for optoelectronic applications. Using electron diffraction and scanning electron microscopy measurements in conjunction with a series of tailored experiments promoting equilibrium and kinetically hindered synthetic conditions, we provide a step by step correlation between the semiconductor-metal and structural changes of the solid and liquid states of the two elements, and whether they segregate, mix or react upon compression. We identify depletion zones as an effective monitor for whether the process is moving toward reaction or segregation. This work hence also serves as a reference for interpretation of complex agglomerates and for developing successful synthesis conditions for new materials using extremes of pressure and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.