Abstract

We present evidence that the photoluminescence intermittency of $\mathrm{Cd}\mathrm{Se}∕\mathrm{Zn}\mathrm{S}$ core/shell quantum dots is correlated with the dielectric environment surrounding the quantum dots. The statistics of dark state lifetimes in the intermittency is found to be related to the stabilization energy of charges in the local dielectric surrounding of the quantum dot. This supports the model of an ionized quantum dot in the dark state. Charges ejected from the quantum dot are suggested to be self-trapped in mid-bandgap states of the surrounding matrix due to atomic and electronic relaxation processes. These trap states are inherent to disordered materials and proposed to be a general source of power law intermittency of various types of emitters such as quantum dots and dye molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.