Abstract

To study the kinetics of the interactions between soluble (s) CD4 and HIV-1-Env-expressing cells in relation to subsequent events leading to cell fusion and inhibition of syncytia formation. Vaccinia-HIV-1 (Env)-infected CD4- T-cells were used to study the kinetics of sCD4-gp120/41 interactions and syncytia formation (with CD4+ T-cells) under identical conditions. sCD4 association and dissociation rates for HIV-1-Env-expressing cells, and quantification of sCD4-induced gp120 shedding was determined by a quantitative flow cytometry assay. Syncytia inhibition was measured in the continuous presence of sCD4, or after washing of HIV-1-Env-expressing cells following pre-incubation with sCD4. The kinetics of syncytia inhibition correlated with sCD4 binding when sCD4 was maintained during the culture. When Env-expressing cells, which had been pre-incubated with sCD4, were washed to remove unbound sCD4, no syncytia formation inhibition was observed, even following sCD4-induced shedding of greater than 50% of surface gp120 molecules. The lack of syncytia inhibition seen after removal of unbound sCD4, even after pre-incubation of cells under saturation and gp120 shedding conditions, indicated that sufficient numbers of fusogenic molecules remained on the sCD4-treated cells. In addition, fast dissociation of pre-bound sCD4 occurred in culture. These results are important for understanding HIV-1-Env-mediated cell fusion and AIDS therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.