Abstract

Molecular simulations of coarse-grained diblock copolymers (DBP) were devised to unveil correlations between microstructure and ionic mobility (μ) in the limit of high salt dilution. It is found that three key microstructural features had a significant effect on ion transport: the extent of microdomains mixing (β), the local unit-cell tortuosity of the conductive domain (λ), and the local fluctuations in the density (ρ) of the polymer matrix. While the β effect has been previously studied in some detail for lamellae morphology, the effects of ρ nonhomogeneities and λ have received much less attention. To control the local fluctuations in ρ, a polymer design variant is explored that incorporates a second conductive block (A′) that is incompatible with the other two blocks (A′–A–B). It is found that increasing the fraction of A′ beads increases the frequency and amplitude of the local ρ depleted regions within the conductive domain, resulting in an increase in μ. Additionally, the effect of morphology on μ ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.