Abstract

Objective: Differential flora and differential metabolites shared by the intestinal and respiratory tracts of rats were screened to analyze the possible role of changes in intestinal flora and metabolites in the progression of pneumoconiosis in rats. Methods: In April 2020, 18 SD rats were randomly divided into three groups (control group, coal mine dust group and silica group, 6 in each group) , rats in the coal mine dust group and silica group were perfused with 1 ml of 50 mg/ml coal mine well dust suspension and silica suspension by nontracheal exposure, respectively. While rats in the control group were perfused with an equal dose of sterilized normal saline. Twenty four weeks after dust staining, rat feces, throat swabs, and lung lavages were collected. 16SrDNA gene sequencing and UHPLC-QTOF-MS untargeted metabolomics were used to analyze the flora and metabolites in feces, throat swabs and lung lavage fluid of rats in each group, to screen for shared differential flora and shared differential metabolites in intestinal and respiratory tract, and the correlation analysis between the differential flora and metabolites was performed using Spearman's statistics. Results: Compared with the control group, a total of 9 species shared differential flora between intestinal and respiratory tract were screened at phylum level, and a total of 9 species shared differential genus between intestinal and respiratory tract were screened at genus level in the coal mine dust group, mainly Firmicutes, Actinobacteria, Streptococcus, Lactobacillus, etc. Compared with the control group, a total of 9 shared differential flora were screened at the phylum level, and a total of 5 shared differential genus were screened at the genus level in the silica group, mainly Proteobacteria, Actinobacteria, Allobactera, Mucilaginibacter, etc. Compared with the control group, a total of 7 shared differential metabolites were screened for up-regulation of Stigmatellin, Linalool oxide and Isoleucine-leucine in both intestinal and respiratory tract in the coal mine dust group. Compared with the control group , a total of 19 shared differential metabolites werescreened in the silica group, of which Diethanolamine, 1-Aminocyclopropanecarboxylic acid, Isoleucine-leucine, Sphingosine, Palmitic acid, D-sphinganine, 1, 2-dioleoyl-sn-glycero-3-phosphatidylcholine, and 1-Stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine were up-regulated in both the intestinal and respiratory tract. Conclusion: There is a translocation of intestinal and respiratory flora in pneumoconiosis rats, and rats have an imbalance of lipid metabolism during the progression of pneumoconiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.