Abstract

Classic cable theory was used to analyze the relation between the activation-recovery interval measured from unipolar electrograms and transmembrane action potential duration. Theoretic analysis demonstrated that the temporal derivative of the extracellular potential is proportional to a spatial weighting of the third temporal derivative of the transmembrane action potentials along a cable with uniform propagation in a homogeneous medium. Thus, the activation-recovery interval, measured as the interval between times of minimum derivative (Vmin) of the QRS and maximum derivative (Vmax) of the T wave, should be related to action potential duration, measured as the interval between times of Vmax of the upstroke and Vmin of the downstroke of the transmembrane action potential. This relation was examined experimentally in 12 anesthetized dogs. Unipolar electrograms and transmembrane action potentials were recorded simultaneously from sites within 2 mm of each other during control states, cardiac sympathetic nerve stimulation, localized epicardial warming, and graded reductions in myocardial perfusion. The heart was paced from several sites. There was close correlation between activation-recovery interval and action potential duration measurements taken during cardiac sympathetic nerve stimulation and local epicardial warming (r = 0.96 and 0.99 for cardiac sympathetic nerve stimulation and warming, respectively). In five animals in which coronary perfusion pressure was gradually lowered, the variables correlated closely over a range of values from 62 to 212 msec (r = 0.98). However, although the overall correlation was good and mean differences between activation-recovery interval and action potential duration were small, in individual cases there were differences up to 24 msec.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.