Abstract

One of the most devastating consequences of early corticospinal lesions is the impaired dexterity that results in a noticeable deficit while manipulating small objects. One purpose of the present study was to investigate the extent to which a deficit in the coordination of fingertip forces when grasping and lifting an object between the thumb and index finger could account for the impaired dexterity in patients with congenital hemiplegia (CH). A second objective was to examine whether, in these patients, deficits in skilled hand movements are correlated with the importance of structural damage to the corticospinal tract. The scaling and coordination of fingertip forces during precision grip was investigated in 16 CH patients (aged 8-19 years) and 16 age- and sex-matched control subjects. Proprioception, stereognosis, pressure sensitivity and motor upper limb function (including digital and manual dexterity) were also assessed quantitatively. The structural damage of the corticospinal tract was estimated by measuring the cross-sectional area of cerebral peduncles with MRI and by calculating an index of symmetry between the two peduncles. In CH patients, a large number of parameters measured during the grip-lift task were significantly different when compared with those found in control subjects. Among those, the duration of the preloading and loading phases was significantly longer in CH patients. In addition, both the dissimilarity and time-shift between the profiles of the grip and load force rates, quantified with the cross-correlation method, were also significantly larger in CH patients; the time-shift was strongly correlated with impaired dexterity. These findings suggest that impaired dextrous finger movements in CH patients may specifically result from their inability to ensure a precise synergy between fingertip forces while manipulating an object. Finally, the finding that the time-shift also correlated with the corticospinal tract dysgenesis, as estimated with the cerebral peduncle asymmetry, argues in favour of a critical role of the corticospinal system in the temporal coordination between different muscles involved in dextrous hand movements. Both digital and manual dexterity were also altered in the non-paretic hand of CH patients. This deficit may reveal the contribution of the lesioned hemisphere to the control of ipsilateral skilled finger movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.