Abstract

BackgroundAdequate operation interspace is the premise of laparoscopy, and carbon dioxide (CO2) was an ideal gas for forming lacuna. A retroperitoneal space is used to form operation interspace in retroperitoneal laparoscopic radical nephrectomy by making ballooning, and the retroperitoneal space has no relative complete and airtight serous membrane, therefore CO2 absorption may be greater in retroperitoneal than transperitoneal laparoscopic radical nephrectomy. Excess CO2 absorption may induce hypercapnemia and further cause physiopathological change of respiratory and circulatory system. Therefore, exact evaluation of amount of CO2 which is eliminated from body via minute ventilation is important during retroperitoneal laparoscopic radical nephrectomy. The aim of the paper is to study the correlation between CO2 storage at the last minute of gas insufflation and area of retroperitoneal lacuna during retroperitoneal laparoscopic radical nephrectomy.MethodsForty ASA I/II patients undergoing retroperitoneal laparoscopic radical nephrectomy were enrolled. CO2 storage at the last minute of gas insufflation and area of a retroperitoneal lacuna were observed. Linear correlation and regression were performed to determine the correlation between them.ResultsThere was positive correlation between CO2 storage at the last minute of gas insufflation and area of retroperitoneal lacuna (r = 0.880, P = 0.000), and the equation of linear regression was y = −83.097 + 0.925x (R2 = 0.780, t = 11.610, P = 0.000).ConclusionsAmount of CO2 which is eliminated from body via mechanical ventilation could be calculated by measuring the area of retroperitoneal lacuna during retroperitoneal laparoscopic radical nephrectomy, and an anesthetist should be aware of the size of lacuna to predict high CO2 storage at the last minute of gas insufflation.

Highlights

  • Adequate operation interspace is the premise of laparoscopy, and carbon dioxide (CO2) was an ideal gas for forming lacuna

  • A retroperitoneal space is used to form operation interspace in retroperitoneal laparoscopic radical nephrectomy by making ballooning, and the retroperitoneal space has no relative complete and airtight serous membrane [5], CO2 absorption may be greater in retroperitoneal than transperitoneal laparoscopic radical nephrectomy [6]

  • Linear correlation and regression were performed to determine the correlation between amount of CO2 which is eliminated from body via mechanical ventilation and the area of retroperitoneal lacuna and obtain the equation of linear regression

Read more

Summary

Introduction

Adequate operation interspace is the premise of laparoscopy, and carbon dioxide (CO2) was an ideal gas for forming lacuna. The aim of the paper is to study the correlation between CO2 storage at the last minute of gas insufflation and area of retroperitoneal lacuna during retroperitoneal laparoscopic radical nephrectomy. Excess CO2 absorption may induce hypercapnemia [7] and further cause physiopathological change of respiratory and circulatory system [8, 9]. The correlation between CO2 storage at the last minute of gas insufflation and the area of retroperitoneal lacuna in retroperitoneal laparoscopic radical nephrectomy was studied, and the aim was to evaluate exactly amount of CO2 which is eliminated from body via minute ventilation and further provide useful information for intraoperative management and mechanical ventilation strategy

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.